Physical Properties

<table>
<thead>
<tr>
<th>Property</th>
<th>Measurement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thickness</td>
<td>0.208 mm (0.008 in.)</td>
</tr>
<tr>
<td>Length</td>
<td>25.4 mm (1 in.)</td>
</tr>
<tr>
<td>Width</td>
<td>14 mm (0.55 in.)</td>
</tr>
<tr>
<td>Sensing Area</td>
<td>9.53 mm diameter (0.375 in.)</td>
</tr>
<tr>
<td>Connector</td>
<td>2-pin Male Square Pin</td>
</tr>
<tr>
<td>Substrate</td>
<td>Polyester (ex: Mylar)</td>
</tr>
<tr>
<td>Pin Spacing</td>
<td>2.54 mm (0.1 in.)</td>
</tr>
</tbody>
</table>

✓ ROHS Compliant

Standard Force Ranges (as tested with circuit shown below)

Force Range:
- Low: 0 - 1 lb. (4.4 N)
- Medium: 0 - 25 lb. (110 N)
- High: 0 - 100 lb. (440 N)*

Force Range Adjustments:
In order to measure higher forces, apply a lower drive voltage (-0.5 V, -0.10 V, etc.) and reduce the resistance of the feedback resistor (1kΩ min.) To measure lower forces, apply a higher drive voltage and increase the resistance of the feedback resistor.

![Recommended Circuit](Actual_size_of_sensor)

- * Supply Voltages should be constant
- ** Reference Resistance R_F is 1kΩ to 100kΩ
- Sensor Resistance R_s at no load is >5MΩ
- Max recommended current is 2.5mA

Typical Performance
- Linearity (Error) < ±3%
- Repeatability < ±2.5% of full scale
- Hysteresis < 4.5% of full scale
- Drift < 5% per logarithmic time scale
- Response Time < 5 µsec
- Operating Temperature -40°F - 140°F (-40°C - 60°C)*

*Force reading change per degree of temperature change = ±0.2%/°F (0.36%/°C)

Evaluation Conditions
- Line drawn from 0 to 50% load
- Conditioned sensor, 80% of full force applied
- Conditioned sensor, 80% of full force applied
- Constant load
- Impact load, output recorded on oscilloscope
- Time required for the sensor to respond to an input force